skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rudolf, Daniel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We study an example of a hit-and-run random walk on the symmetric group $$\mathbf S_n$$ . Our starting point is the well-understood top-to-random shuffle. In the hit-and-run version, at each single step , after picking the point of insertion j uniformly at random in $$\{1,\ldots,n\}$$ , the top card is inserted in the j th position k times in a row, where k is uniform in $$\{0,1,\ldots,j-1\}$$ . The question is, does this accelerate mixing significantly or not? We show that, in $L^2$ and sup-norm, this accelerates mixing at most by a constant factor (independent of n ). Analyzing this problem in total variation is an interesting open question. We show that, in general, hit-and-run random walks on finite groups have non-negative spectrum. 
    more » « less